“......”</p>
书房内。</p>
看着高斯递到面前的这份全新手稿,徐云的脸上不由冒出了一股好奇。</p>
这里头的内容会是什么?</p>
要知道。</p>
在数学领域里,亲和数属于数论的一个分支。</p>
和它能搭上边的‘亲戚’如果真要一个数,符合条件的例子实在是太多太多了。</p>
比如素数、等和数,孤立数,公和数等等一大堆都是......</p>
甚至你硬要扯的话。</p>
非欧几何都能和数论扯上关系:</p>
因为非欧几何也是一个一阶谓词逻辑与初等数论的形式系统,符合哥德尔不完备定理。</p>
因此单靠高斯的介绍,徐云确实猜不出这份手稿的内容,只能亲自观阅才知道了。</p>
随后他伸出双手,小心的接过手稿。</p>
接着他又想到了什么,停下动作,对高斯问道:</p>
“高斯教授,这份手稿是您给我的,看完算.....”</p>
结果徐云话未说完,高斯便无情的打消了他的念头:</p>
“当然要记入五卷之一。”</p>
徐云只能耸耸肩。</p>
好吧,卡逻辑bug失败。</p>
不过总体上问题不大,毕竟这五卷手稿的机会本身便是个意外之喜。</p>
随后他又打量了一番手稿外部,发现手稿只被一根红丝带绑着,没有看到类似亲和数那种写有大致内容的封条。</p>
见此情形。</p>
徐云顿时目光一凝,心中的重视度又提高了几分:</p>
不通过标题索引就能找出来的手稿,说明它在高斯心中的地位一定不一般,至少不需要靠着封条来进行记忆提示。</p>
想到这里。</p>
徐云解丝带的动作不由快了几分,看上去就像是在解...解鞋带一样。</p>
嗯,解鞋带,不要多想。</p>
小半分钟后。</p>
一卷摊平的稿纸出现了在了徐云面前。</p>
徐云捏着稿纸上半部的两角,像是催更党倒着拎作者似的将其拿起,目光逐行逐字的看了下去。</p>
几秒钟后。</p>
徐云的瞳孔骤然一缩,大惊之下,手中的手稿险些脱手落地!</p>
只见这份稿纸的开头处,赫然便写着一行字:</p>
《有关奇完全数不存在的证明》</p>
这个标题的正确读法是【有关/奇完全数/不存在/的证明】,其中最关键的核心就是中间的两个词:</p>
奇完全数、不存在。</p>
了解数论的同学应该都知道。</p>
这两个词若是同时出现在后世的2022年,注定将会在数学界中引发一场大地震。</p>
早先提及过。</p>
在徐云穿越来的2022年,亲和数在数学界中的地位一直都有些尴尬:</p>
一方面。</p>
亲和数可以通过计算机穷举列出,跟生产线似的比较约数和。</p>
符合条件的输出YES,反之便是NO,一键搞定。</p>
截止到2022年8月15日凌晨3点34分,已经发现的亲和数便超过了对。</p>
其中最长的一对数长达2400多万位——请注意,不是2400万这个数字,而是2400万位,一个亿是九位数。</p>
如果实在不太好理解这个概念,可以把“位”看成一个字。</p>